

Shoreline Impacts

- Many different types of shoreline
- Different environmental conditions lead to different species which leads to varying levels of sensitivity
- Differing shorelines require differing clean-up techniques

Shoreline Types & Sensitivities

Tidal Flats

Environmental Sensitivity Index

1A	Exposed rocky shore	8A	Sheltered scarps in bedrock, mud or	
18	Exposed, solid man-made structures		clay and sheltered rocky shore	
10	Exposed rocky cliffs with boulder talus base	8B	Sheltered, solid man-made structures	
2A	Exposed wave-cut platforms in bedrock, mud or clay	8C	Sheltered riprap	
2B	Exposed scarps and steep slopes in clay	8D	Sheltered rocky rubble shores	
3A	Fine- to medium-grained sand beaches	8E	Peat shorelines	
3B	Scarps and steep slopes in sand	9A	Sheltered tidal flats	
4	Coarse-grained sand beaches	9B	Vegetated low banks	
5	Mixed sand and gravel beaches	9C	Hypersaline tidal flats	
6A	Gravel beaches (granules and pebbles)	10A	Salt and brackish water marshes	
6B	Riprap structures and gravel beaches	10B	Freshwater marshes	A
	(cobbles and boulders)	100	Swamps	Source: NOAA
7	Exposed tidal flats	10D	Mangroves	Source

Shoreline Impacts

Rocky Shore (1A)

- Shoreline split into zones dependant upon exposure
- Different species can tolerate different exposure levels

Sandy Shore (3A or 4)

- Not as obviously as other shorelines
- Burrowing organisms
- Oil may filter down into the sediment

Shoreline Impacts Tidal Flats (9A, 9C)

- Very sensitive
- Support a vast number of plant and animal species
- Substrate easily eroded
- Mangroves or other vegetation may grow in the upper intertidal zone

Mangrove (10D)

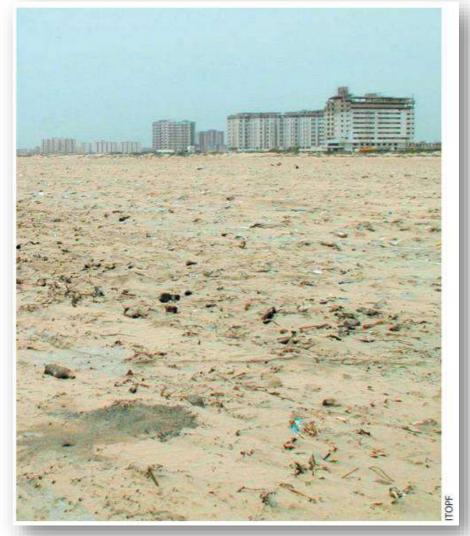
- Very sensitive
- Provide habitat for wide variety of organisms
- Oil impacts trees by smothering roots

What are the goals of a shoreline clean-up response?

What are the goals of a shoreline clean-up response?

- To accelerate natural recovery
- Minimise the impact of the clean up operations

SHORELINE TREATMENT



What can we do if we know there is going to be a shoreline impact?

What can we do if we know there is going to be a shoreline impact?

Shoreline before and after preimpact debris removal

Shoreline response – three Stages

Stage 1 – Gross contamination removal – Emergency Stage

Recovery of oil floating against the shoreline and bulk, pooled oil ashore

Stage 2 – Removal of moderate to heavy contamination - Project Stage

Removal of stranded oil and oiled sediment

Stage 3 – Final treatment - Polishing Stage

- Final clean up of light contamination and oil stains
- Clean to the "end point"

STAGE 1

Emergency Stage – Gross contamination removal

Stage 1 – Gross contamination removal

Why do we recover oil that is floating against the shoreline?

- Stop it contaminating new sections of coast
- Large areas of oil stranded in the tide line will refloat on the next incoming tide and may move to other areas.

Stage 1 – oil removal options

Methods are available for Stage 1

Booms & skimmers

Manual recovery

Stage 1 – booms and skimmers

Advantages

 Efficient - recovered waste should have a high proportion of oil

Relatively small workforce required

Prevents the oil migrating to additional

areas of shoreline

Disadvantages

- Requires trained responders
- Requires specialist equipment
- Limited by weather

Stage 1 – mechanical recovery

Advantages

- Rapid removal of large volumes of oil and contaminated sediment
- Uses readily-available equipment
- Small workforce

Disadvantages

- Requires good access points
- Generates large quantities of lightly oiled waste
- Can remove significant volumes of substrate – erosion issues
- Environmental impact
- Applicable to few shoreline types

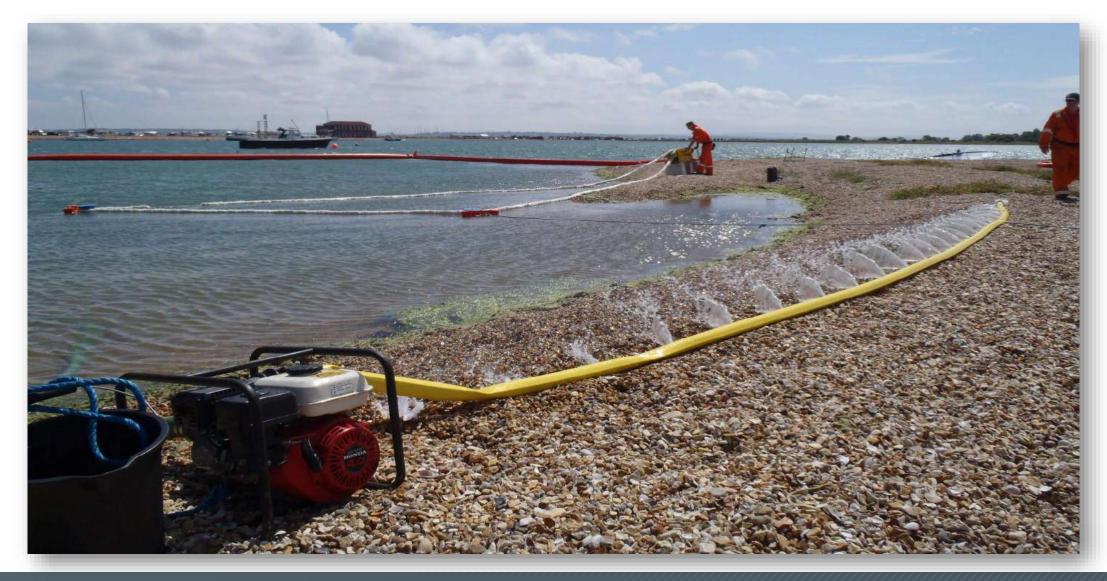
Stage 1 – manual recovery

Advantages

- More selective than mechanical recovery less sediment removed
- Can utilise non-specialist local workforce (with supervision)
- Appropriate for more sensitive shoreline types i.e. mangroves

Disadvantages

- Large workforce required
- Manual handling issues
- Duty of care to workers



STAGE 2

Project Stage – Removal of moderate to heavy contamination

Stage 2 - High Volume Low Pressure flushing

Stage 2 - High Volume Low Pressure flushing

Stage 2 – Surface and Subsurface oil removal

Stage 2 – Surf Washing

Stage 2 – Surf Washing

Just 3 weeks later

- Minimal oiled waste
- Beach profile unaltered
- Reduced labour required

NEBA is an important consideration

STAGE 3

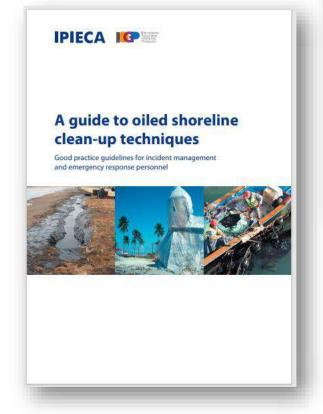
Polishing Stage – Final treatment

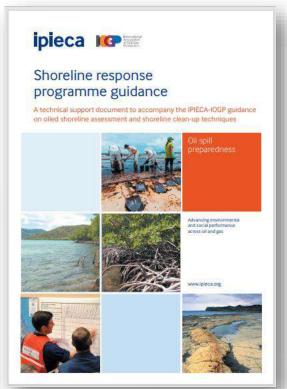
Stage 3 – Polishing Stage

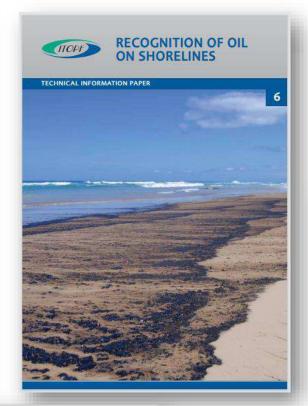
- Final polish
- Removal of equipment
- Replacement of materials if required

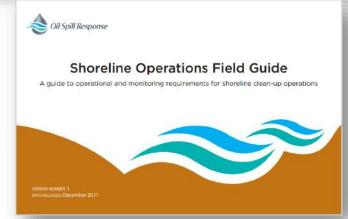
Things to avoid during a shoreline response

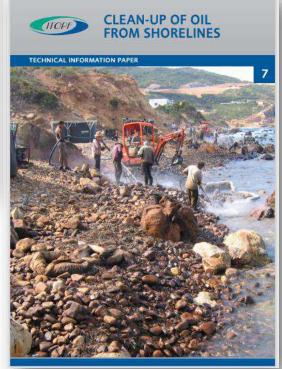
- Sterilising
- Over-cleaning


Shoreline Considerations


- Site Set up (Hot, Warm and Cold Zones)
 - ◆ Decontamination
 - Equipment lay down areas
 - Security
 - ♦ Rest facilities etc.
- Waste Management
- PPE
- Safety Training / Risk Assessment


Summary:


- Every response is different
 (oiling level, shoreline type, oil type, seasonal variations, clean-up techniques, etc)
- Very important to use NEBA from the outset
- Shorelines may not be as clean as the public/media may like when an end point is met


PUBLICATIONS

Thank you

www.oilspillresponse.com

Ken Church

Aberdeen Deputy Manager

Kenchurch@oilspillresponse.com

Find us on

- > www.facebook.com/OilSpillResponseLimited
- > www.linkedin.com/company/oil-spill-response-ltd
- > www.youtube.com/user/OilSpillResponseLtd
- > www.twitter.com/oilspillexperts

